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Abstract

Superconvergent error estimates in £o( H') and £oo( H') norms are
derived for recovered gradients of finite difference in time/piecewise
linear Galerkin approximations in space for linear and quasi-nonlinear
parabolic problems in two space dimensions. The analysis extends
previous results for elliptic problems to the parabolic context, and
covers problems in regions with non-smooth boundaries under certain

assumptions on the regularity of the solutions.






1 Introduction

1.1 Background

This paper is concerned with the derivation of superconvergent error es-
timates for recovered gradients of finite difference in time/piecewise linear
Galerkin approximations in space for linear and nonlinear parabolic prob-
lems in two space dimensions. For the linear and quasi-nonlinear problems
the analysis covers the cases of variable coefficients and of regions with non-
smooth domains under certain assumptions on the regularity of the solutions.

Superconvergent recovered gradient error estimates for elliptic problems
having solutions with low regularity due to Wheeler and Whiteman [12] and
Goodsell and Whiteman [4], [5], [L3]-[15], which developed the work of Levine
[7], are here extended to parabolic problems with variable coefficients and,
using numerical integration with either interpolation of coefficients or Gaus-
sian quadrature, o( H') results are produced. The analysis has been further
developed to produce similarly ¢,( H') and £, (H") superconvergent estimates
for quasi-nonlinear parabolic problems.

The application of gradient recovery for time independent problems was

discussed by Krizek and Neittaanmaki [6] and Wheeler and Whiteman [12].



Thomeé et al. [10] have considered the recovery of gradients for the heat
equation in domains with smooth boundary, and in this context have proved
?5 ({5 ) superconvergent estimates. The results here involving interpolation
of coefficients extend the work of Douglas and Dupont [1] who obtained

optimal convergence results in ¢, (Ly) for nonlinear parabolic problems.

1.2 Superconvergence results for elliptic problems

The results for the parabolic problems of later sections of this paper are based

on superconvergent recovered gradient error estimates for two dimensional

elliptic problems. These are reviewed briefly and the notation is defined.
Let Q C IR? be a simply connected open bounded domain with polygonal

boundary 9. The function u(x) satisfies
-V (a(x)Vu(x)) = f(x), x€Q, (1.1)
u(x)=0, z€0Q, (1.2)
where a(x) and f(x) are continuous and their second derivatives are locally

in Loo(R) and a(x) > do > 0, x € Q. A weak formulation of (1.1) is set up

by multiplying both sides by v € Hj(2) and integrating to obtain

A(u,v) = (f,v) V v e Hy(Q), (1.3)
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where
Au,v) = /QanVv , u,v € Hy(Q), (1.4)

and

(f,v)E/va, ve H\(Q). (1.5)
For convenience and ease of explanation the variable coefficients in (1.1)
have been taken as a scalar rather than as a positive definite matrix, whilst
homogeneous Dirichlet boundary conditions have been used in (1.2). The
matrix of coefficients and more general boundary conditions could also be
treated.

Following [15], it is assumed that for the region € of problem (1.1)-
(1.2) there exist subdomains g, @1, Q2, such that Qo CC ) CC Ny C Q
satisfying the following conditions

Condition 1. o, 1, Q are rectangular and are partitioned by a uniform
isosceles right triangular mesh in the following way: each subdomain is the
union of a finite number of squares each of which is subdivided into two
triangles Ty by the diagonal of positive slope.

Condition 2. Q, is remote from singularities of the solutions u of (1.3) at

corners of AN, so that u € W2 (Q,), and the regularity of f is assumed to be



such as to guarantee this.

The part of the region ) — Q, is covered with a quasiuniform trian-
gular mesh which is compatible with the regular mesh in Q,. Let hj de-
note the diameter of the escribing circle of any element T} and define h =
MaXelements k- A finite dimensional subspace S* C H}(Q), consisting of
continuous piecewise linear functions, is defined over the triangular mesh

partition of ). The Galerkin problem approximating (1.3) is that of finding
up € S* 3 A(un,vi) = (fovn) V vy € Sh. (1.6)

In (1.6) it has been assumed that all integrations have been performed ex-
actly. If, as is usual, the integrations are performed numerically, the resulting

problem is that in which
up € S5 A*(ul,vn) = (fyvn)* Vo, €S, (1.7)

where A* and (- ,-)* indicate numerical integration.
We wish to use gradient recovery at all vertices (nodes) of triangles in (g
and, as in [4], we define for nodes internal to Qg the recovered gradient of

vp € S to be

1 6
E gz vvh Tt (1.8)



where T}, ¢ = 1,2,...,6, are the six triangles surrounding the node. For
nodes on the boundary 00 we define suitable specific recovery schemes,
see [13], and these together with (1.7) produce recovered gradients of v, at
all nodes of Qg. To these we now fit respectively to each component of the
recovered gradient a piecewise linear function (Voft), € S* and (Vvf), € Sh.

This construction ensures that
|Vu — VuiFlog, < C (]ul — unl1,, + h3|u|3,90) (1.9)

where u; € S* is the piecewise linear interpolant to u. The following result,

which uses result (1.9), is due to Whiteman and Goodsell [15].

Theorem 1.1 Let u(x) € H}(Q) N HY(Q) N H3(N), 1 < ¢ < 2, be the
solution of the weak problem (1.3) and u} € S* be the solution of the Galerkin
problem with numerical integration, (1.7). If Vui® is the recovered gradient

function derived using (1.8) then

‘Vu — VuR

00y < C(w)h* 5™ (Jul, o + lulyq,) (1.10)

where w € C®(Q)NCE(Q) is a cut-off function such that w(x) =1, x € o,

w(x) =0, x € (2 — Q) Uy,



Remark 1.1 Result (1.10) has assumed the regularity u € H7(2), 1 < ¢ < 2,
for the weak solution, thinking of lower regularity as arising from the data

and the geometry of problems (1.1)-(1.2). It could be that, in spite of the
geometry of the problem, the solution is in fact smoother than the above so

that u € H2(Q). In this latter case the estimate (1.10) becomes

Vu — Vu
01

oo S C@R™ (Julyg + lulyg, ) (1.11)

where the auxiliary problem

-V (aV¢)=1% in Q,
(1.12)
¢=0 on 00N,

P € Lo(Q), is such that ¢ € H'*P(Q), 0 < p < 1.

The above theorem, remark, and recovery of gradients will now be applied

for the space derivatives of parabolic problems.



2 Discrete Time Galerkin Procedures with

Quadrature for Linear Parabolic Problems

2.1 Weak formulation, notation and numerical schemes

In this section we consider a linear parabolic problem with nonconstant co-
efficients, involving the elliptic operator of Section 1. For this problem we
derive superconvergent estimates for recovered spacial derivatives of discrete
time piecewise linear Galerkin approximations. These estimates will be ex-
tended to more general linear problems and in Section 3 to quasi-nonlinear
parabolic problems.

The function u(x,t) satisfies the equation

Ou(x,t)

5~V a(x)Vulx,t) = f(x,1), x€Q, teJ=(0,T], (21)

together with the boundary condition
u(x,t) =0, x¢€dfN, (2.2)
and the initial condition

u(x,0) = up(x), x€Q, (2.3)



where, as in Section 1, @ C IR? is a simply connected polygonal domain with
boundary Q. The functions a(x,t), f(x,t), (X,t) € @ xR are assumed to be
such that a(x,t) € Lo.((0,T); W2(Q)) and f(x,t) is positive and bounded.

It is also assumed that u(x,t), the solution of (2.1)-(2.3) is such that
u(X,t) € Loo(H(Q)) N Loo(Hg () N H'(H(Q)) N Lo(H ()  (24)

where 1 < ¢ < 2.

For convenience we have assumed homogeneous Dirichlet boundary con-
ditions. General Dirichlet, Neumann and mixed boundary conditions can be
treated with only minor modifications in the arguments.

In approximating problem (2.1)-(2.3) we use a continuous piecewise linear
Galerkin technique in the space dimensions, whilst the time discretisation is
treated using implicit single step finite difference techniques of the “6”-type,
where 0 < 0 < % These time discretisation methods are chosen because they
are most commonly used in practical computations for genuine engineering
problems.

We first set up the weak form of (2.1) by multiplying both sides of the
equation by a test function v(x) € H}(Q) and integrating by parts so that we

have the weak form of (2.1)~(2.3) in which, for any ¢t € J, u(x,t) € H5(Q) xJ



satisfies

(ue(x,), v(x)) + A (L u(x, 1), v(x)) = (f(x,1),v(x)) , v(x) € Hy(Q),

(2.5)
where u; = du/dt and, for v(x) € Hy(f),

At ¢,) = [ alx0)V(6(x))- V($(x))dx, (26)

(f(.,1),0) = /Q F(x, )v(x)dx . (2.7)

As in Section 1 we again define S* C H}(Q) to be the space of piecewise
linear functions on 2. The continuous time Galerkin problem approximating

(2.5) is that in which us(x,t) € S* x J satisfies

((wn)e(. , 1), vn) + At un,vn) = (F(.,t),vn) Yon € S*,  (2.8)
where
A(t; un, vs) E/Qa(x,t)Vuh(x,t)-Vvhdx, (2.9)
and
(FC s 00m) = [ flox,tyon(x)dx (2.10)

The time interval [0, T] is discretised by letting At = T/N, where N is a

positive integer, and setting " = nAt, n = 0,1,2,...,N. The #-type finite



difference replacements will be at time levels t™® where

=0t 4+ (1 -0, 0<0< =, n=0,1,...,N—-1. (2.11)

N |

Similarly for any function ¢(x,t) € Ly(Q) X Leo(J) for n =0,1,...,N -1,
we define
1
o™ = 04" + (1 -0)p™t, 0<6< 5 (2.12)
and also for u;(x,t") = u} the backward difference replacement
u™t — ™ u(x, ) = u(z, t?)

We shall adopt the following standard norm notation. If w(x,t) defined

on [0,T] x Q is sufficiently smooth and 1 < p < oo, then

”w”LP((O,T),H) = ”F(t)“L,,(o,T)
where
F(t) = lwllz (8)
and H is a normed linear space with || ||;. In general we shall take H to be

a Sobolev space H?(Q)) for some positive q.

In addition we define

lwll, 0 = Nwllr, qomywe@) (2.14)

10



lollwa = vl or)La@) (2.15)

where

Il s = NHllwy )

= (Z ||Da'||§,,,(n)) - (2.16)

laf<s

For p = 2 we have that
Il = - ll, 20 - (2.17)

For the corresponding seminorms we use the notation |-| and the summation

in (2.16) is for |a| = s.

Lemma 2.1 Let V = H)(Q) and Q(-) = Q(z,t,u(z,t)) be a function that
is bounded above and below by positive constants ag and ay. Further assume
that Q is Lipschitz continuous as a function of u and that |G| and |V-Q(u)G]
with G = %?L are bounded on Q x [0,T]. We assume the elliptic regularity

given by (1.12). Let W € S" satisfy
(Qu)V(u—W), Vv)=0, veSst. (2.18)

If u and % belong to L*(0,T; HY(N)), 1 < ¢ <2, then v = u — W satisfies

11



Jv

¥l 2207220 + ot

L2(0,T;L2(Q))

Ou
ot

< KhiTlt? [”“||L2(0,T);Iaf‘?(9))+ ] .
L2(0,T;H(Q))

Proof. It is easy to show that there exists a constant C s‘uch that
Il < CR7H lull, o - (2.19)
Moreover, if a € V is such that
(Q(w)Va,Vv)=0, ve S, (2.20)

then it follows by the “Nitsche lift” (see [9]) and elliptic regularity that there

exists a constant C** such that
lellog < C™ R |lall, g - (2.21)

To obtain estimates for ¢ we employ arguments used in [11] and [2].

If we differentiate (2.18) with respect to ¢ we see that

v _ [9u 3Q
(Q(u)V—a—t, Vv) = (E a—uVV, Vv)
= (GVy,Vv), veSh. (2.22)

12



One can easily show by standard arguments that

v q—1 a_u
3 |, < Ch [“U“q,n + T q,Q] . (2.23)
Let 8 € V satisfy
(Q(v)VS,Vv)=(GVy,Vv), veV. (2.24)

Then if & = 2% — 8 we see from(2.21), (2.22) and (2.24) that

lelloq < Ch? [lall o

Ju

+g-1
< ow* [nunm 2

] : (2.25)
g,

The last inequality follows by noting that

18I0 < Clivlliq -
To bound |||, o we let ® € V be such that

(Q(u)V®,Vv)=(8,v), veV.

13



Then

1Blioe = (Q)VE,VA)
= (GVr,Vd)
= (Qu)Vy,Q ' (u)GVY)
= (Q)Vr,V(Q7 (u)G® - X))
- (Qu)Vr,eV(Q7 (v)G)), x€S*
= (Qu)Vr,V(Q7(u)G® - X))

+ (1 V- Q)OV(QI(w)G)), xeS".
Thus,

1Bl < CR vl o l@lliip0 + Clivllog 12li4pa

< Ch* M |Bllggq -

and the result is immediate.
Returning now to the discretisation of the parabolic problem (2.5) and
using the replacement (2.13) in (2.5) with v = vy € S*, we have a t = t™f

such that

(6tunvvh) + An,e(un,e’vh) = (f(xvtn,o)vvh) + (En,gvvh) y W€ Sh ’ (226)

14



where
A"’a(u"’g,vh) = /Qa(x,t"‘e)Vu(x,t"'o) - Vopdx (2.27)

and E™ is the remainder arising from the time discretisation, i.e.
E™ = ™ — uy(-, 1) .

We are finally able to define the approximating problem for (2.1)-(2.3)

as that in which the solution u}(x)
wp s {081, ..t} — SP
satisfies
(euz™, on) + A (™ v) = (F(, ™), 0)" Vo€ Sh,  (228)

where A*™?(- ) is the numerical approximation to A™(- ,-) produced by us-
ing numerical integration, as discussed in Section 1, either by using a quadra-
ture rule or by interpolating to the coeflicients a(x,t). We similarly define
(f(-,t™®),vs)* to be the numerical approximation to (f( , 19, vh).

For every t € J we now define the elliptic projection @(x,t) € S* x J of
u by

At an( 1)) = A(tu(-,t),vh) Y vy €85, (2.29)

15



Then 4} = ,(x,t") is, from (2.26), given by

(8etiy, von) + A (ap?, vp)
= (8(a} — u™),vn) + A (@}? vp)

— A™ ((ﬂh(' ,tn’g),vh) + (f( ’tn,o)’vh) +(E™,vh) . (2.30)

For convenience we now define

n" uyt — Uy . (2.31)

€TL

i —un (2.32)

Then subtracting (2.30) from (2.28) we obtain, using the above notation,

(6™, va) + A (0™, v4)
— (f( ,tn,o),vh)* _ (f( ’tn,o),vh) _ (En,e,vh)

— (8™, on) — A™(ar’ o) + A (an(- 1), vn)

T (vh) = (E™, va) — (86", vn) + T3 (vs) (2.33)

where

M) = f( )" — (F(-, ™), vn)
T3 (vn) = A (an(- ,t™), 0 — A0 (i3 vp) -

16



Setting v* = ™% in (2.33) we obtain

(8™, n™8)+A™ (™ ) = T (p™0) = (E™ ™) — (6™, ™)+ T3 (n™F) .

But
n+l _ ,n
(8e™,m™%) = (U—E—n—,enw(l—a)n”l)
! n 2 n n .n
= {a=o |, -0l - (- 20)(m )
1 1—20 2 126
PR — | n+1 _ ny2
2 & {{“ ‘) ( 3 )}“n o {0+———2 }un Ho,n}
so that
n _n,f 1 n+1 2 ni2
S I R { i W AT
and hence
L n+1 2 ny2 «n,0 (. nb _nb
Q‘A_t{ n noyn—lln ||o,n}+A (n™%,n )

< TP ™) + [(E™, ™) + (6™, ™) + T3 (™0)] . (2.34)

For the term |T7%(p™)] in (2.34) we have that

T ™) = |(FC ™) = (FC 1))

n,g

< OR[FC.0)] 0|

2ol o

< R[5, (I oa + [ |af  239)

17



using approximation theory and Lemmas 3.7 and 3.8 of [12].

In considering the term |(E™®,5™%)| in (2.34), we have that

9 L Y

s o + 17,0 f -

n,8

(E™,n™)] < C|E™

n

En,9

IN

|

Using Taylor series expansions, it can easily be verified that

n,g 1 1
HE “0,9 < C(At)2 ||utt”L2((t",t"+l);Lz(Q)) 5 0 S 0 < 5 9 (2-36)

e~
0,02

3 1
< C(At)2 ”uittHL’é’((tn,th);L2(Q)) y 0= 5 . (237)
Now consider the term T5°(n™?) in (2.34). We have that

T2n,0(nn,9) A (tn,e; ﬁh( ’tn,Q)’ nn‘(?) A 8 ( v 771 )

= A (tn,a;ah(_ ’tn,O),nn,G) _ A(tne ~:0’TI )

+ A ™) — A (Rt ™) (2.38)
Consider the second pair of terms

A ™) = AT (™)

= / (a(x, t™%) — a*(x, t"’g)) var® . vp™idx .
Q

18



For the case of interpolation where a*(- ,-) = aj(-,-) this gives

n ~TL,0 n, *n, ~n,0 n, ~n,0 n,
A ™) = A )| < CR lally o0 [T, o 117, o -
(2.39)
For the quadrature case
nG, ~n,8 _n, *n,fr~n,0 _n,
A5 a0y — A (@ )|
= S [ (al,t") = a(Gu, ™)) Vi - Vdx
k k
~n,0 n,
< Ck? lally 00 0 | all o e (2.40)
Now
~n,d ~n,9__ n,d n,8
“r i S L ' i PPN
n,0 n,0
< C(u ot m) . (2.41)

Thus from (2.38)-(2.41) for ¢ € (t*,t"*!) we have

~n,d s *n,0 ¢ ~n, s
A ap’, g™y — A ap? o)

‘1,0) (|77n|1,n +

n,d

< R fallyn ( -

u

1,0 +

’7n+1‘1,n) . (2.42)

19



For the first two terms in the right hand side of (2.38) we have

AW (-, 1), ™) — At ap’, p™)
= [ alx ™)Vl ) - i) - Vrdx
Q
= / a(x,t"v")V (ah( 7tn,9) _ 011;: _ (1 _ 0)17,2"'1) . Vn"’edx
Q

< Nlalloog [an(  #%%) = 0 — (1 = O)az*|, |

n

1,9 1,2

n,g

1.
”a”ooﬂ 77 1,0 X CAt2 '(uh)t|L2((t",t"+1);Hl(Q)) 3 0 S 0 < % 3

n,g
n

3/~
HaHoo,Q 1.0 x CAt2 |(uh)tt‘L2((tn,tn+l);HI(Q)) ) = % .

(2.43)

Estimates (2.42) and (2.43) together provide a bound for T3 (79))].

Consider next the term (6,£™,7™%) in (2.34); by Cauchy-Schwarz

(664 < T b
But
; 1 1 2
l6:€" o = /Q[E/;n gtdt} dx

1 2
< E”'fth((t",t"“);L’(Q)) '

Now & = Z(ua} — u") and from Lemma 2.1

20



(87, ™) < h*7*PC(Jlalloo 0, llaell o g

(el 2 om e ystraqany + Nl ogem emssy aragay)

it Hm) : (2.44)

x (I loq +

From (2.34) and the estimates (2.35)—(2.44) we find that

1 n+1 2 ni2 *n,8/ n,d _n,b
-2—5;{ U Hoyﬂ—lln Ho,n}+A (™, n™)

< {erlern,,
+ hTTHPC ([l o llell X

tloo, 00,82
(““”Lz((tﬂ,tw);Hq(o)) + ”“t||L2((t",t"+1);m(n)))

Pty o
(177l +
L2((tn,tn41);02(Q))

atﬁ+1
+ {Ch2 lall; o0 (|U"’0|1,9 + |€n’0|1,0)

+ CAtPE

A WE

9%,

+ Cllall o0 (At)°~7 e

} ™ lh.a (2.45)

L (e );HI (@)
where[3=1if0§0<%andﬂ=2if¢9=%.

Let ao = inf(o,r)xa @*(x,t) and a1 = sup(g ryxq @*(X,t). Then

2

A*n,e(nn,e,nnﬂ) > 4o “vn"v"llo,o .

(2.46)

21



Thus, using (2.46) and the inequality ab < 5-a* + £b* with € = 1 for terms

involving [|7" ||y o and |[n***|l, o and € = ao for terms involving n™? Lo We
obtain from (2.45) that
s {7 = ) ool o,
ant UM llog ™ W Hloa L R P
n 2 —
< CRSC )|, 0+ C (lalla s lacllog) 260717
2 2
X {lullizaenmey oy + 1ellizagen sy, o }
98+1, |12
+ (a7 o
0 lpaqen emr); 12
n 2
+ C(ao) ||a||zw(o,r);wgo(n)) (h4 u™® 1.0
2
+ A1 Pu
Ot | L (am ams1; B3 c2)
ag m92 n|2 n 12
T el (TP s WA (2.47)

where in (2.47) we used the fact that

~n,d 0
Un |10 < C(ao, a1) lun II,Q
and
8ﬁ&h aﬁu
- <Claollalwe o) |57
ath 0.0 ( ’ % )) oth LQ

Multiplying (2.47) by 2At and summing over n for n =0,1,2..., N — 1, we

22



obtain the estimate

2
1,0

n,0
n

75 = 1], o + 200 Nz_j_: At

2,0

N-1
—~ 2
< Clh2(q—1+p) { Z At ”f( ’tn,O)H
n=0
2
+ Clllalle.q s latlloo0) 14l (r0,7; oy

2 2 '
+ ”a'“LN(O,T);Wgo(Q)) ||u||(L2(0,T);H1(Q)) } +

98+1y |2

ots+1

+ 02(At)2ﬁ{

L2(0,T); L2()

8Pu

2
+ llallizs 0.y, wa ) 918

2
(L2(0,T); HY(Q)) }
_ (N2 ) N2
+ {3 athria+ a2, ) .49
n=1 !

which can be written as

N2 = 9)2
(1= a0l g+ T At
N-1
< GRMTH 4 Gy (AP 4+ 05 Y AtIntI3 (2.49)
n=1

where the constants Cy,C, C3 depend on various derivatives of f, A and u

as in (2.37).
Application of Gronwall’s Lemma (see [2] and [3]) to (2.49) yields the

following result which we state as a theorem:
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Theorem 2.1 Let u(xX,t) € Lo (HI(Q)NHI(Q))NH'(H(2)) N Lo( H3(Q)),
1 < q < 2 be the solution of the weak form (2.5) of the parabolic problem
(2.1)-(2.3) defined in Q x J. Let S* € H}(Q) denote the spaces of piecewise
linear functions defined on the triangular partition of Q as in Section 1 and
let @y (x,t) € S be the elliptic projection of u(x,t). If ﬁ:(x) is the solution

of (2.28) at t*, where J = (0,T), T = NAt and t" = nAt, then

*N 2 N—l = 19 2
(1=At) &, =il +a0 > Atflw, —ar?
0,0 n=0 1,02
< CAMHP) L oy (AP (2.50)

where Cy and C; are constants, 1 < ¢<2,8=1when0<0< % and 8 =2

when 6 = 1. Here 0 < p < 1 is a parameter arising as in (1.12).

At any time level t*, n = 1,..., N, we now apply the recovery proce-
dure described in Section 1 to ﬁ: to produce the recovered gradient function
«nR . N :
V u, . Thus, combining the inequality (1.10) of Theorem 1.1 with the re-

sult of Theorem 2.1, we now have the main (superconvergence) result of this

section.

Theorem 2.2 If u(x,t) and ﬁ:(x) are as in Theorem 2.1, and all the hy-

«n.R .
potheses of that theorem hold, and if V u: is the recovered gradient function
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at the time level n, n =1,2,..., N, then

2
— O(h2=149)) 4 (A1) (2.51)

<R
[vu-vi
(L2(0,tN);L?(R0))

where1 < ¢<2,0<p<l,andB=1if0<0<landB=2i0=1,

where
) N-1 9
Vw2 0myize0y = 22 AV L2, -

n=0
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3 /4,(0,T) Recovery of Gradients for

Nonlinear Parabolic Problems

We now extend the previous analysis to nonlinear parabolic problems in

which the function u(x,t) satisfies the equation

Ou(x,1)

ot -V. (a (X,t, u(x,t))Vu(x,t)) = f(x’t’u(x’t)) !

xeN, teJ=(0,T], (3.1)
together with the boundary condition
u(x,t) =0, x € 00, (3.2)
and the initial condition
u(x,0) = up(x), xeN. (3.3)

The same regularity conditions on f as in Section 2.1 are taken, and we
further assume that f and a are Lipschitz continuous with respect to u with
Lipschitz constant K, and that the regularity of u(x,t) is as in (2.4).

The weak formulation corresponding to (2.5) is, for any t € J, to find

u(x,t) € Hy() x J such that
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(ue(x,8), v(x)) + A (8 w(x, 1), v(x))

= flxtu(x t),o(x))  Vu(x) € HAQ), (3.4)
where

At 6,9) = [ a(xtu(x,1) Va(x) - Vib(x)dx (35)
and

(G, tu(1)),v) = /Qf(x,t,u(x,t))v(x)dx. (3.6)

Equation (2.26) now becomes

(™, on) + A (" u(, 1), 0) = (£, u(x,t),v4)

+ (E™ vy) Yo, € S*, (3.7)
whilst the Galerkin problem with quadrature, corresponding to (2.28), is
(s, on) + A™ (™ vn) = (™, E*u;™),vn)” (3.8)
where the A*™? is now defined as

A*n,9(¢n,9, vh) = /x;ax(x’ tn,a’ Ez¢n,9)v¢n,0 . Vvhdx ) (39)
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Here the use of the * in a* and (f,-)* has the same definition as in Section 2

and

Er¢n,9 = ¢n’ 0S9<%
. 3 n 1 n-1 _ 1
= 2¢ 2¢ , 0= 5 - (3.10)

In the analysis below we denote by f; the linear interpolate in S* of f.

Equation (2.30) correspondingly becomes

(6%, v1) + A0 (@), vp)
= (8(a} — u™),vn) + A (@p°, vp)
- A (tn,f)’ ﬁh('v tn’e)a Uh)
+ (fC ™ u(x, 7)), 0n) + (E™,v4) - (3.11)
Modifications to extend the result of Theorem 2.1 to the current nonlinear

problem involve only the reestimation of T;** and T3’ for the present case.

In order to do this we proceed as follows. Following (2.24) we now have that

Tln'e(vh) = (f(x,t"'o,Exu;l"’o),vh)*

— (f(x, 8™, u(z, ™)), v8) - (3.12)

Let {z;(z)}}Z; be a nodal basis for S* corresponding to the set of nodes z;
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of the partition of 2, and define

M
f[(l‘,t,u EZ CE],t,U .’IJ]))Z]

Set V, = n™%. We first consider the case of interpolation of coefficients. Thus

)| = ‘ (z (£, ™, E*ui™(2,)) = £lx;, 6, u(s, ™)) Zj,n"‘”)

7

+ (il ™, u(, 1) = F(x, ™, u(x, %)), n™)

<

a n, T, *n, n n
Z az(xj,t .v) (E P(x;) — u(xj,t™%)z5,1 '9)
J

+ Cn?| £

n,0

(3.13)

7 oa

2,Q

where v; lies between E’”u;;n'e(xj) and u(x;, t™%).

Now, assuming that |0f/0u| < K, we have that

5 2,1y (B 05) = s )

J

< KZ|E” (%) = ETup(x5)| 2

t 2

Exul’ Xj —uI(xj,t"'9)|zj.

Thus,
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0™ < K || X E () = E*up’(x))| 2
0,9
z n,8 n, n,
+ 20 BT (%)) — ur(x, ™) 25 i
J 0,0
2 n,8 n,8
S VGRS W g W8

IA

C(K) [n(u; —un)llog + |(uh —u)" |, +
Pu’

Bt OJ
+ CRF ()2 0™

+ (At)ﬁ 77""9

0,

0,90’
whereﬂ=1,0§0<%andﬂ=2,0:%.

Here we have used the equivalence of norms for finite dimensional spaces,

l.e.

etz ¥ [E 0] -

We simplify the bound (3.14) as follows:
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2
n-1 ”
n 0,Q

+ €20 + et o I = u>"u§n

| < ¢ 1&){”77 o0 +

2

+ a7 + (a2 | 2

0,Q

+ }+Ch4“ft”"u

pnl ”2
0,Q

+ R2a-14p) Z ” H + (At)w

{=n—1

T 2,0

< C(K) { In"lloq +

9%y
5 ()

2
1,2

+ ChH| £() || +C

"HHO o (3.15)

where " is a point between t*~! and t™?.

Now using Gauss quadrature we have

) = G B (G = Skt e ) e

= X[ [+ 85 4 55+ S wde (3.16)
k k

where

SK = f(Ge, t™, E*u™(Gy)) — f(Gr, t™, E*u}’(Gr))  (3.17)
n,0 _ n9‘ z n,8 n,f z, n,b

Syp = f(G, t™, E™u7*(Gy)) — f(x, 1™, E*up”(z)) (3.18)

S = f(x, 1™ E*ub?(2)) — fa, t™, ur(z, ™)) (3.19)
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Sy = ft™ ur(e, ™) — flz, ™ u(z, t™?)) (3.20)
Using the Lipschitz continuity of f and the definition of E¥, we have that

S [ (S5 + iy
k k

0Pu?

. 2
= + K ||lu-— u1||L°°((0,T)vL2(Q))

< C|(At)*-?
L2((tn,tn41),L2(Q))

+ ol (3.21)

0.0

n,0
n

Now for simplicity we consider first S;,;e.

Y[ sintdz = 3 [ S50 (G
k k

< LA/t Bt o)

n,f

1,T 1,Tk

2
| o+ CHIA g (3.22)

< ao nn,@

In obtaining (3.22) we have used the fact that for any continuous F(x)

/Tk(F(") — F(Gy)) - 1dx =0,

thus,

/T (F(x) = F(Gx)#(x)dz = /T (F(x) = F(G)(O(x) — const)dx .

Now turning to S, we have that
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> S7ldx
k 7Tk
= S [, PGt B (Gu)) = 1(Got™ B (Gu)
— flx 1™, EP () + S(x, 8, BRur(x))] 1
+ / x, 1", E*u™(x)) — f(x, 0™, E*ur(x))| 7dx  (3.23)

By applying the mean value theorem and Gauss quadrature estimates to

(3.23) we have that

n,d n,8 Cgnab oz, s\ LN oL .
S fsutde < Shfr?] g [5G0 B 0) - 567 B, 4
v r *n,o xr n,0 n,
+ K |E%u, " — E%uyp 0,97]9019
3f [’] *n,0
< ¥l Beup? - Eruiy
i 17" | Bu Loo((0,T); Loo(€)) 0.T%
», z  *n,0 _ z n,8 n,f
+ K |[E"u;, Efu; oa ™ o
Thus
n,8 2 n0 n+1 2
Z/ Shdx < h R aed Vsl W8
n—1 2
+C (Inlaa + ",
n 2
+C 3 @ —-w)| - (3.24)
{=n—1 !
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Combining (3.21), (3.22) and(3.24) we have an estimate for T (n™?). The
only terms which did not appear (for the linear problem) in (2.45) are the
||7)"‘1||(2LQ and ”(ﬁh - uI)eMZ,Q, ¢ =n—1,n,in (3.24). These of course arise
from the extrapolation which was not needed in the linear case. This has no
effect on the final estimate, as in (2.45), because of the application of the
Gronwall inequality and approximation theory.

We now seek to estimate the term Tj?(y™?), as in (2.27), for the nonlinear
context. The term Tp%(n™?) is defined as

TP = AT )
b AL ),

In a similar manner to the treatment of Tln’o(n"’a) for the case of the
interpolation of coefficients we have that
T = - Yo (x5, ™0, B=ui™ (x;)) 2, Vi’ - Vn™Pdx

+ / X, 7, u(x, ")) V(- ™) - Vp™Pdx
=/ S(-al, %, B () + a(x;, 10, ERup? (x;)) 2 Vii® - Vo™dx

+ / Z —a(x;,t™ 9 , Efuy (x]) + a(x;, ¢™f yur(x;, t"'e))zjVﬂZ’o . Vn"’edx
+ / ( a(x;, " u (%, t™ 9))z]~ + a(x,t"’e, u(x, t"’e))) Vﬁ;"e . Vn"'edx
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+ [ alx, ™ u(x, (= V" + Van(-, ) - Vi

The proof proceeds similarly to the treatment of the T/"*(p™?) terms. In

particular
|75 9(77"9)\
S I( Eq; *n@ E:L‘ (XJ)‘ZJ
0,0
+ — ur(x;,")| z;
0,0
+ CR lall, o (") | I Viallow g [V,
6)@“ n
+ C(A)°- £ “v” ﬂHon
L2((tr tn+1); HY(Q)) ’
so that

T 8| < C(K,||Vil,.q) %

ny|2 n—1||? 2a-147) N ff?
o+ I o 2 1
251 || 0%u 4y 2 (4
b (age ]2 + bl ()
L2((¢ntm+1);HY(Q))
ao n,g
+ o . (3.25)
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We remark that for ¢ = 2

IViin]l o 0
< NVullgq + 27V (s = @)l Lo 0,1y:22(0)
+ V(e = w)llo0

= (1)

since
IV (wr = @)l oo o,ys20yy < B (3.26)

In the case of Gauss quadrature the treatment of T (n™?) simplifies

. ~n,0 . .
since Viip" - Vn™? is constant over T. More precisely, we have

(™% = Z(- /T a(Gy, ™ E*u™(Gr))Vay? - Vpidx
k k

+ a(x, t™ u(x, ) Var? - Vn"'edx)
Ty

= Z (—/T a(x,t™, Ezu;"’o(x))V&Z'e - Un™Pdx
k k

[ alet,ulx, ") ViR? - Vs )
Tk

IA

KB o] o 952"

’Vn"’e

loo,Q | \o,n (3.27)

The bounds for T (p™f) and T;**(n™*) include no new terms over those

2
for the linear case except the |7 ||, q and 7, H(dh — uI)lnoQ so that
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an estimate of the type (2.47) can be obtained and this leads immediately to

the theorem

Theorem 3.1 Let u(x,t) be the solution of (3.1)-(3.3) and have the same
reqularity as that given by (2.4). We further assume with a(t) = a(t,u(t))
the elliptic regularity assumption for ¢ = 2. Let ui™(x) be defined by (3.8)

with u;® = @9 or uy(-,t°). Then

) N-1 9
- 20|, +ao X ot

< CLRPHP) 4 Oy (AL
where 3 =1 whenO§0<%and,B=2 whenﬂ:%.

In addition the following theorem results immediately from Theorem 3.1,

and the recovery results of Section 2.

Theorem 3.2 Let u(x,t) and uj(x,t) satisfy the hypotheses of Theorem 3.1
and let Vui™ be the recovered gradient function at the time level n,n =

1,2,...,N. Then (2.51) holds for (Vu — Vu}R) in the case of the nonlinear

problem (3.1)-(3.3).
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4 (,(0,T) Recovery of Gradients for

Nonlinear Parabolic Problems

All the estimates derived so far in this paper have been in terms of the L,-
norm in time. From a practical point of view it is much more useful to have
estimates which in time are in terms of the £..-norm. We now derive an foo-
norm time estimate for the backward difference procedure (§ = 0) as applied
to the nonlinear problem (3.1)—(3.3). Whilst for simplicity we consider the
case § = 0, our arguments can be generalized in a straightforward fashion to
include the case 0 < § < %

We proceed as in the previous sections and taking § = 0 subtract equa-
tion (3.11) involving the elliptic projection % from equation (3.8) involving
the calculated Galerkin approximation uj. For ease of notation in allowing

variability of the third variable in a(- ,- ,-) we redefine the A* and A to

contain three arguments. Thus

A (7, 6, 0) = /Q a*(x, 1", 2)V - Vipdx

/Q a (%1, 2) Vg - Vipdx

; /Tk a (Gk, gt Z(Gk)) Vé - Vipdx
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depending on whether interpolation or Gauss quadrature is used, and

At 2, 6,9) = /na (x,,2(x, 1)) V- Vpdx (4.2)
so that
(8™, va) + A (i, ", vn)
= — A At vy) + AT R AR o)
(8™, o) — AL, @ o) + AR L A0 )
+(f, ), on)” = (F(x, 7 0™, vh) — (E™0n) . (4.3)

Setting vy = &n™ in (4.3), multiplying the result by At and summing the

result over n, n = 0,1,2,..., N — 1, we obtain
N-1 \ N-1
Z At ”5t77n”o,n + Z AtAmH(UZn»’?nHa 5t7ln)
n=0 n=0
N-1 5 5 3
= Y AT +17+13)
n=0
N-1
— 3 At[(6€",8m™) + (B, ™) (4.4)
n=0
where
Tr = —A™ (g, aft, §™) + A (", aytt, ém™), (4.5)
Tr = — AP (g, a4t 6™) + AT et apt 6m™), (4.6)

&3
Il

(f(x, tn+1, u2n+l)’ 5t77n)* . (f(x, tn+1’ un+1), 6:77") ] (47)
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Writing the time difference 67" as (n"*! —n™)/At and taking n° =

second term on the left hand side of (4.4) becomes

0, the

N-1
Z AtA*n+1(u2n’nn+l’6tnn)
n=0
1 R 1 1 1 1
_ E X_%At [A*ni— (u;n’nn-{- ’nn+ )_ At (u;n’nn’nn)]
1 N ) N-1 )
= 5 {Z ALA™ (™™ gt ") = Y AtATT (ui",n",n")}
n=1 n=1
= AN 0", pY)
1 N-1 )
At{z At(A™ (w0 ") — AT (ui",n",n"))}
— A*N *N-1 _ N—IA Tn
- ( an ) Z ¢ 4
n=0
where
. -1
Ty = o (a"‘(- RAR e A E ,t"“,u;:")) Vp*-Vptdx, 1<n<N-1
T = 0.

Combining (4.4) and (4.8) we see that

N-1
Z At ”‘Stnn”?),ﬂ + A*N( - 1’77 anN)

n=0 Nt )
Z At (Z —(6:£7,6m™) — (En’e,&ﬂn)) .
n=0

(4.9)

(4.10)

We now estimate the right hand side terms of (4.10) and for ease of
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notation adopt again the norm ||| - |||, where

N
lgll* = > Atllé™lgq - (4.11)

n=0

By the Schwartz inequality we have

N
> At6£",8m™) < &l - el (4.12)
n=0
and
al o
Y AUE™, 8m™) < At lluell g2 o) c2e N8l - (4.13)

n=0

Now using summation by parts we have that

N-1
Y AT =
n=0

N-1
_ ZAt / (a(x, £, ui?) = a”(x, ™, w™)) Vgt - V(6™
1

- 2{ / ats, ([a(x, £, up ™) = a*(x, 7w )] va;;)-vn"dx}

+/9 (x,tN, usN1) — (x,tN,uN'l)) val . vyNdx
-1

Z [/95,( (3, 8%, upY) — a*(x, ¢, u")) Vg - Vldx

n=1

+ /Q(a (x,t",up™ ) — a*(x,t",u"'1)> Vé,uy, - V'q”dx] At

+ /Q(a (x, ¢V, upN-1 ) a”(x, tN,uN"l)) vl - vpVdx . (4.14)
We note that
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8 (a*(x, " uim ) — a(x, 7, u"'l))

= & (%(x,t",ﬂ”_l)(uzn_l - un-l))

da* o n
= 6t (au (x tn 74 l)) (uh — U )
da*

+ —(X, tn+1’pn)6t(u;n—l _ un—l)

Ou
for any 7"! lying between u}"~! and u"~!

Using the Lipschitz continuity of ¢* and the Schwarz inequality we deduce

that
N-1
> ATT
n=0
N-1 60
< Yatlag|  IVislag (Inloe + 1€0)
n=1 u 00,§2
8(1 v~ a n-1 a n—1
+15el 198la (Jo 0+ 126, 0)
aa’ \vE W7k ( n-1 n—1 ) vn"
Sl P AR S L P lo0) ) 197" lloq

(1 o+ 1 L) 193 197
G (il + WIEI + Ml + Wisll ) - 1@l

+a (Ilé”“llo,g ¥ Hn”'lHo,g) [v7™ ] (415)

IA

where C; depends on , and ||Vé.a}]|.

o 1Va]l o

42



We have

N-1 .
S ATy =

n=0

— Z At/ X tn+1 n) _ a(x, tn+l’un+1)) V,azwl . vat"]n

_ T (/ (a(x, 71, u™) — a*(x, £ 0™)) Vi Vo

n=0

+ / X tn+1 n+1) _ a(x’tn+l’un+l)) Vﬂ2+1 . vatnn) (416)

Again we apply summation by parts which yields

N-1
> ATy =
n=0
N-1 80*
— _ 2 1. n gn-1 n—1 ~n\ . n
- Zl (A) (/ 6 G- 17,07 b Vuh> Vitdx
~ At / (- N, 0V VsV 1val . vpNdx
— Z At/ét a” —a)"Vay) - Vptdx

+/ a* —a)(-,tNuM)\Vall . vpVdx . (4.17)

Thus, from (4.17)

43



N-1
dAITY <

n=0

dar du?
c | At [V in]| o 0
( A |, N0 | 1o oy
a2at au ~
LAt - 5 |Vl o 0
Ul o L2((0,T);L2())
Y 6 IV (@n)ell Il
ou || I L2((0,T),L%(Q)) Ptlleod !
da* dul-1 N
t ' .
il i I el MR [vn™] 19l
1 3£Vﬂh
”_ o a) 3 ~ IVl
L2((0,T);L*(Q)) ¢=0 o
+ lla* = @l e o.79,2300 1 V8o “vnN“ : (4.18)
We have
N-1  _
Y ATY <
n=0

< =1 Nenll]

< C (Il + MEN+ A+ ell a o2y sracayy) - MNenlll -

(4.19)

44




In addition we see that

N-1
> ATy <
n=0

N-1

n 6¢"
< DAt (Ilém llo.q + HW

n=0

) R 0" lo 1V log - (4:20)
0,Q

Applying results from Theorem 3.1 for ¢ = 2 and p = 1 we have that
In™lo.q < C(R* + At).

Letting At = O(h?) we have that

o
< (I||5m||| +|%

L2((0,T):;L2())

Ou

2
L

Il (4.21)

LZ(OYT)»HZ(Q)))
Combining the estimates (4.15), (4.18), (4.19) and (4.21) we conclude

that

45



Wéenlll + AN (ui¥ 1, 0™, ™)
< N8N Mol + At llueell r2((0,7):z2¢y) [1Eenl]
+ Cr(|llnlll + NENT + li6enlll + &£l 11TV nll]
+ Gl oo+ o) 197
+ CoAt ||ull 20,1y 220
+ s (1nlll + €N + B ull 2o ryaracay)

o¢
+ sl + | 52

LZ((0,T);L2())

ou
Il

h2
T

L2((0,T);:H?*(%2))

%"
8tdu

da*
du

where C; and C depend on 0 and | V||, o C2 also

b
00,82

depends on ||V, || ..
Using approximation theory and nonlinear results from Theorem 3.1 and

Lemma 3.1, we have
|7 + 117l < C(8* + A) . (4.22)

Thus for At = O(h?) we have
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8emlll + A*(@;¥ ", 0™, n™)

< cllball? +C(e) |1 + (@02 + e[ vn|] .

which implies that
"] o < CCR*+ 2.
This provides the L.,-time estimate for the backward difference procedure.

As stated earlier, the generalization to the case 0 < 6 < % follows similar

arguments. We finally state these results as a theorem.

Theorem 4.1 Let u(x,t) be the solution of problem (3.4) and u}*(x) be the
solution of (3.8) with 6 = 0, where * denotes numerical integration using
either interpolation of coefficients or Gauss quadrature. It is assumed that

g=2andp=1in (1.12). Then

"Vu(- ") — Ve

2 B
o S C(B? + A7)

foranynSNwhereﬂ=1if0§0<%andﬂ=2if9=%.
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